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We study the evolution of Boolean networks as model systems for gene regulation. Inspired by biological
networks, we select simultaneously for robust attractors and for the ability to respond to external inputs by
changing the attractor. Mutations change the connections between the nodes and the update functions. In order
to investigate the influence of the type of update functions, we perform our simulations with canalizing as well
as with threshold functions. We compare the properties of the fitness landscapes that result for different
versions of the selection criterion and the update functions. We find that for all studied cases the fitness
landscape has a plateau with maximum fitness resulting in the fact that structurally very different networks are
able to fulfill the same task and are connected by neutral paths in network �“genotype”� space. We find
furthermore a connection between the attractor length and the mutational robustness, and an extremely long
memory of the initial evolutionary stage.
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I. INTRODUCTION

Boolean networks, where each node can take on only two
possible values, are used to model phenomena as different as
social interactions, gene regulation, or communication be-
tween neurons �1–3�. In the original “random” form of the
model, introduced in 1969 by Stuart Kauffman, each of the N
nodes receives an input from K randomly chosen other
nodes. The value of each node i is updated at each time step
according to

�i�t� = f i��i1
�t − 1�,�i2

�t − 1�, . . . ,�iKi
�t − 1�� ,

where f is a randomly assigned Boolean function and �i1
to

�iKi
are the inputs to node i. Starting from an initial state ��

= ��1 , . . . ,�N�, the dynamics will eventually lead to a peri-
odic attractor. Kauffman intended this model to capture es-
sential features of gene regulation networks, where the two
states of a node correspond to a gene being expressed or not
expressed. While it has become clear in the meantime that
models that are constructed at random cannot fulfill this task,
Boolean networks that are constructed based on biological
data, can indeed successfully model the dynamical properties
of real gene regulatory networks. The segment polarity net-
work of Drosophila melanogaster �4� and the yeast cell-
cycle network �5�, for example, were modeled using Boolean
dynamics of the genes, and both models show dynamical
attractors that agree with the biological sequence of events.

The dynamical behavior of random Boolean networks dif-
fers significantly from that of the mentioned realistic models.
Random Boolean networks can be in three different dynami-
cal regimes, depending on the value of K and the statistical
weights assigned to the different Boolean functions. These
dynamical regimes are usually called frozen, critical or cha-
otic. The parameter �, which is K times the probability that
the value of a node changes when one of its inputs changes,
is used to discriminate between these regimes �6,7�. A net-
work is said to be in the frozen phase if a perturbation at one
node propagates during one time step on an average to less

than one other node ���1�. In the chaotic phase, a pertur-
bation propagates on an average to more than one node dur-
ing one time step ���1�. Networks at the boundary between
the two phases are called critical ��=1�. In the frozen phase,
the length of attractors is either 1 or very small. Most of the
nodes are frozen, this means that they do not change their
states anymore in the stationary state. In chaotic networks,
attractors are very long on average, and a nonvanishing pro-
portion of the nodes change their states on the attractors.
Both frozen and chaotic networks typically have a small
number of attractors. In critical networks, the number of rel-
evant nodes �i.e., those nodes that determine the attractors�
increases with the network size only as N1/3, while the aver-
age number and length of attractors increases exponentially
with the number of relevant nodes.

In contrast, the realistic Boolean models for gene regula-
tion combine features of “chaotic” and “frozen” networks.
Like frozen networks, they have a robust dynamics, with
attractors being reached after a few update steps. As in cha-
otic networks, one �nontrivial� attractor dominates the dy-
namics with its basin of attraction �number of states leading
to and lying on the attractor�, and a considerable proportion
of nodes change their state while the network is going
through the biologically relevant sequence of updates.

Model networks with these realistic features can be ob-
tained by starting from random networks and subjecting
them to an evolutionary process. In �8�, we evolved a ran-
dom network by selecting for dynamical robustness, i.e., by
requiring that a network that has reached an attractor returns
to this attractor after a node is perturbed. The network was
mutated by changing a function or by rewiring a connection,
and after a small number of mutations, a network could be
obtained that satisfied fully the selection criterion. When the
network was evolved further via neutral mutations, i.e., mu-
tations that do not change the fitness, the basin of attraction
of the main attractor became eventually very large. The most
striking result of this investigation was that the space of all
possible networks contains a percolating subset of networks
with 100% fitness, with neighbors in this subset being con-
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nected by one mutation. The evolution of an entire popula-
tion of networks under the mutation and selection rules men-
tioned above was studied in �9�.

Studying the evolution of Boolean networks has a long
tradition. Previous publications used only subsets of the
above-listed possible mutations on Boolean networks. The
mutations chosen by Kauffman and Smith �10� are the rewir-
ing of connections or the changing of bits of the Boolean
functions. The fitness measure is the Hamming distance of an
attractor to a predefined target state. This simulated evolution
is not able to produce networks with 100% fitness. In the
articles by Bornholdt and Sneppen �11,12� the possible mu-
tations are adding and/or removing a link, and the selection
criterion is mutational robustness, that is the daughter net-
work has to reach the same attractor as the mother network.
Long time evolution shows persistence of high K values. The
evolved networks have shorter attractors and larger frozen
components than random networks. In the publications by
Paczuski et al. �13� and Bassler et al. �14�, the nodes of the
network represent competing agents and a rule based on
game theory determines the least fit node. The update func-
tion of this node is changed. The network evolves to a sta-
tionary state “at the edge of chaos” and is highly canalized.
In the work of Braunewell and Bornholdt �15�, the mutations
are the rewiring of links, and networks are selected for ro-
bustness of attractors against small perturbations in the up-
date times. Only a small number of mutations is required to
find a fully stable attractor set. During the evolutionary pro-
cess, the average number of attractors decreases and the size
of the largest basin increases.

The random Boolean models and selection criteria chosen
so far do not take into account a central feature of real gene
regulation networks: real regulatory networks respond to ex-
ternal inputs. Therefore, we want to investigate in this paper
the evolution of Boolean networks under selection for a ro-
bust response to changes in an external input. Depending on
the considered application, two versions of the selection cri-
terion are relevant: cells need to be able to respond reversibly
to changes in the environment, such as a change in the avail-
able food source or a temporary stress. In this case, a revers-
ible switching between attractors has to occur. On the other
hand, cells perform an irreversible switching between attrac-
tors during embryonic development, where cells change their
gene expression pattern when the organism goes to a new
developmental stage. In addition to following one of these
two switching patterns, we require both attractors to be
stable under perturbations of one node �if this node is not the
external input node�.

In order to check if our results are generic, we use two
different sets of update functions, both of which are consid-
ered realistic for gene regulation networks. Our first choice
of functions is motivated by �5�, where threshold functions
are used to model the yeast cell-cycle network. Each connec-
tion is thus either activating or repressing, and the incoming
signals are added up to determine if the total input is above
or below the threshold for switching a node on. The second
set of functions used in this paper is the set of canalizing
functions, which are found to be abundant in eukarotic gene
regulatory networks �16�.

We perform the evolution of a single network by means of
an adaptive walk, where every mutation that does not lower

the fitness is accepted. Adaptive walk simulations were also
performed in �8�. They are a valuable tool for obtaining in-
sights into the properties of the fitness landscape. A fitness
landscape represents the fitness as function of the genotype.
This can be done either by a direct mapping, or via the phe-
notype. The “genotype” of a network is its structure and the
“phenotype” is given by its dynamical behavior.

In the next two sections, we describe the details of our
dynamical update rules and of our adaptive walk simulations.
Then, in Sec. IV the properties of the evolved networks and
of the fitness landscape obtained after short and after very
long times are presented and discussed. In the last section,
we summarize and evaluate our findings.

II. UPDATE RULES

The first type of update functions used in our investiga-
tion is threshold functions. The value of a node in the next
time step is determined in the following way:

�i�t + 1� =�1, �
j

cij� j�t� − h � 0,

0, �
j

cij� j�t� − h � 0,

�i�t� , �
j

cij� j�t� − h = 0,	 �1�

where h is a threshold that is the same for every node �17�.
The couplings cij are �1 with equal probability, and cij =0 if
node i receives no input from node j. So the input sj =cij� j
from node j to node i can take three different values: 0 ,+1 or
−1. A node is activated when the sum of its inputs exceeds
the threshold value and is inactive when the sum of its inputs
is below the threshold. When the sum of the inputs gives
exactly the threshold value, the node does not change its
state in the next time step. The phase diagram of random
Boolean networks with this set of update functions was ex-
plored in �17�. The practical advantage of using this set of
functions lies in the fact that nodes with many inputs can be
implemented with little numerical effort and with little
memory usage.

The second type of update functions used in this study are
canalizing functions, as implemented in �18� and used in �8�.
These update functions fall into the following four sub-
classes

f��1,�2, . . .� = �1 OR g��2, . . .� , �2�

f��1,�2, . . .� = �NOT �1� AND g��2, . . .� , �3�

f��1,�2, . . .� = �NOT �1� OR g��2, . . .� , �4�

f��1,�2, . . .� = �1 AND g��2, . . .� , �5�

where the four subclasses are chosen with equal probability
for each node. Here, �1 is the canalizing input that deter-
mines the output of the function independently of the other
nodes when it takes its canalizing value. A random Boolean
function g that depends on the remaining variables deter-
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mines the output when �1 is not on its canalizing value. The
function g is generated by choosing with the same probabil-
ity the output value 0 or 1 for every input combination.

III. RULES FOR THE SIMULATION OF THE ADAPTIVE
WALK

The adaptive walk is a hill climbing process that leads to
a local fitness maximum. If repeated often enough, it yields
valuable insights into the fitness landscape of a system. We
start our simulations by creating a random network with K
inputs per node and with update function chosen at random
from the considered set. One of the nodes is chosen to be the
external input. It therefore receives no input from the other
nodes. In order to determine the fitness of the initial network
�and later that of the mutated networks�, first the network is
updated according to the Eqs. �1� or �2�–�5�, until it reaches
an attractor. Then the value of each node �except the one of
the external input� is flipped one after the other, and it is
counted for how many of these flips the network returns to
the same attractor. This can happen at most N−1 times. Then
the external input is flipped and the network is again updated
until it reaches an attractor. If this attractor is the same as
before, the fitness is set to 0. If a different attractor is reached
the nodes are again flipped one after the other, and the ro-
bustness of the second attractor is evaluated. The maximum
fitness value, which can be obtained based on the robustness
of the two attractors, is 2�N−1�. The next step depends on
the chosen fitness criterion. The external input is switched
back to its initial value. The “stay criterion” demands that the
network stays on the second attractor, the “return criterion”
demands that the network returns to the first attractor. Not
fulfilling this criterion leads to a fitness decrease. We per-
formed our simulations with two different fitness functions.
In a first version, the fitness was lowered by 1 if the criterion
was not fulfilled. In a second version, the fitness was set to
zero. While both versions assign to the same networks a
fitness value of 100%, the path taken to the fitness maximum
differs. For the first version, networks tend to first improve
the robustness of their attractors and then to satisfy the “re-
turn” or “stay” criterion, while the order is reversed for the
second version. After determining the fitness of a network, a
mutation is attempted and is accepted if it does not lower the
fitness. Neutral mutations are those that do not change the
fitness value. This procedure of attempting a mutation and
evaluating the fitness is iterated until a certain stopping con-
dition is satisfied. In the cases considered in this paper this
stopping condition is a predetermined number of accepted
mutations. We performed the following four types of muta-
tions, all of which occur with the same probability: the ad-
dition, the deletion or the redirection of an input, or the
change of an update function. An update function is changed
by choosing a new random function in case of a canalizing
network and by changing randomly the signs of the interac-
tions in case of a threshold network. After choosing the type
of mutation, the node at which this mutation shall be per-
formed is selected at random. For canalizing networks, we
limited the maximum number of inputs to Kmax=10, since
simulations become too slow if we go beyond this value. For

threshold networks, Kmax=N. The minimum number of in-
puts is Kmin=1 in both cases. If the chosen mutation could
not be performed at the selected node because of these con-
straints, a different node was chosen.

IV. RESULTS

The simulations were run for network sizes N=50 and
initial connectivities ranging from Kini=1 to 5 for canalizing
networks and from 2 to 7 for threshold networks. To be able
to compare the properties of the adaptive walk until the net-
works reach maximum fitness and the evolved properties of
the two network types, our data are not plotted against Kini
but against �ini which is calculated according to Eq. �9� in
�18� for canalizing networks and according to Eqs. �3� and
�5� in �17� for threshold networks. For threshold networks,
the parameters were chosen as Kini=2 to 7 and h=−0.5, so
that �ini lies between 0.5 and 1.5, just as for canalizing net-
works. � thus covers the frozen, the critical and the chaotic
regime. In the next subsection, we will investigate the adap-
tive walk up to the moment where maximum fitness is
reached. The properties of the path to 100% fitness and the
properties of the evolved networks are evaluated. In the sub-
sequent subsection, we investigate the neutral evolution of
the networks after they have reached maximum fitness. Fi-
nally, in the last subsection we will examine some networks
with maximum fitness in detail and describe how they fulfill
the selection criteria.

A. Path to maximum fitness

Every point in the plots of this section is an average over
at least 600 network realizations. On the left hand side of
each figure the results for the “return” criterion are plotted
for both versions of defining the fitness function and for
canalizing and threshold networks. On the right hand side the
same is done for the “stay” criterion.

First, we evaluated the fitness of the initial networks �Fig.
1�. Except for the second version of the “stay” criterion
�where the fitness is set to zero if the network does not stay
on the second attractor after switching again the external
input�, the initial networks have an average initial fitness of
more than 40% of the maximum fitness, which is due to the

0

20

40

60

80

100

0.5 1 1.5

in
iti
al
fit
ne
ss
[%
of
m
ax
.f
it.
]

λini

return

can 1
thresh 1
can 2

thresh 2

0.5 1 1.5
λini

return stay

can 1
thresh 1
can 2

thresh 2

FIG. 1. �Color online� Fitness of the initial randomly generated
networks for different initial connectivities K �initial sensitivities
��. Except for the second version of the “stay” criterion, initial
random networks already have a quite high fitness.
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fact that the networks have a considerable probability of re-
turning to the same attractor after perturbing one node. For
frozen and critical networks, this is due to the large number
of frozen nodes. Chaotic networks also have a frozen core,
but its size decreases with increasing �. In our investigation
in �8�, where dynamical robustness was the only selection
criterion, the initial fitness was found to decrease with in-
creasing � and with increasing N. Figure 1 shows no such
decrease with increasing �, apparently because the smaller
dynamical robustness of chaotic networks is compensated for
by the larger flexibility, which makes it easier to switch be-
tween two attractors upon changing the external input. The
probability of returning to the first attractor after switching
back the value of the input node, is so high that the average
initial fitness decreases by less than 1/3 between the first and
second version of the “return” criterion and decreases signifi-
cantly only for the second version of the “stay” criterion.
Since we have plotted fitness as function of the sensitivity �,
the average fitness does not depend on the set of update
functions used. For the first version of both selection criteria,
initial fitness grows with increasing initial connectivity or
initial �. It is easier for networks with more chaotic dynam-
ics to fulfill our fitness criteria, because there are less �but
longer� attractors.

Figure 2 shows the length of the path, measured in the
number of accepted mutations, until reaching maximum fit-
ness. There is a huge difference between the two criteria.
Networks evolved with the “stay” criterion need far more
accepted mutations until they reach maximum fitness, which
shows that the “stay” criterion is much more difficult to sat-
isfy than the “return” criterion. For both criteria and both
update rules, less mutations are needed to reach the global
fitness maximum when �ini is larger, even when networks
start with similar initial fitness. More chaotic networks have
less frozen nodes and can be changed more drastically with
one mutation. Dynamical robustness appears to evolve faster
with threshold functions than with canalizing functions,
since the number of mutations required to reach maximum
fitness is lower in the first case.

Figure 3 shows the percentage of accepted mutations
among the attempted mutations. For the “return” criterion

�Fig. 3 left�, it is independent of the version or of the update
rules used. The percentage of accepted mutations decreases
with increasing �ini or Kini. Taking together Figs. 2 left and 3
left, one can see that although chaotic networks are closer to
maximum fitness, more attempted mutations are needed in
order to find the successful mutations. For the “stay” crite-
rion, the decrease in the percentage of accepted mutations
with initial � is not as pronounced as for the “return” crite-
rion. For the second version of the “stay” criterion it even
seems to be always 20% independent of �ini. Apparently,
almost all mutations are performed during the search for a
network that satisfies the “stay” criterion. Once it is satisfied,
high robustness is obtained very quickly.

Next we look at the ratio between the length of the attrac-
tors at the end and at the beginning of the adaptive walk to
the fitness maximum �Fig. 4�. For the “return” criterion the
change in attractor length is similar for both versions of the
criterion, for both sets of update rules and for both attractors.
Attractors of networks that start in the frozen phase become
somewhat shorter during the adaptive walk, attractors of net-
works that start with a ��1 become slightly longer on the
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way to the maximum. Since the number of mutations be-
tween the initial and final network is small, the change in
attractor length is also small. Attractors in frozen networks
can be made more robust by making them even shorter,
while attractors in chaotic networks become more robust by
making them larger, because this means there are less attrac-
tors left and that their basin of attraction is larger.

With the “stay” criterion, the second attractor always
shrinks for all networks. The shrinking is more pronounced
for larger �ini because the networks start with larger attrac-
tors but end up with very short attractors. It appears that the
“stay” criterion is easier fulfilled when the second attractor is
a fixed point and when the network is frozen. In contrast, the
first attractor must be sufficiently large that it can respond to
a change in the external input. This effect is more pro-
nounced for canalizing functions. For the second version of
the “stay” criterion, the first attractor always grows indepen-
dent of the update rules used �at least for the � values inves-
tigated by us�. The initial effort to first find a network that
satisfies the “stay” criterion, increases the length of the first
attractor by a larger amount than when the network is first
optimized for dynamical robustness. In all cases the two at-
tractors have equal weight in state space, that is their basins
have similar sizes.

B. Neutral evolution on the plateau of maximum fitness

After the networks have reached maximum fitness, they
can evolve further via neutral mutations. Apparently, there is
a huge plateau of maximum fitness that spans the entire net-
work space. For each version of the model, we continued the
evolution for a very long time, until the networks had under-
gone 800 000 accepted mutations. Figure 5 shows the evolu-
tion of the average connectivity �denoted by K�. The large
fluctuations of K indicate that structurally very different net-
works are able to fulfill the same task. The horizontal lines
indicate the K values for which �=1. They would separate
chaotic networks from frozen networks if the networks were
random Boolean networks. Although the evolved networks
cannot be classified in this way, there is nevertheless some
correlation between the attractor length and the average con-
nectivity �see below�.

For canalizing networks, the K values behave similarly
for the “return” and the “stay” criterion. Most 100% fitness
networks have K values between 1 and 3, but solutions with
K�3 are also found by the evolutionary process. As men-
tioned above, we have imposed a cutoff at Kmax=10, but this
is of no relevance since the networks did not come even
close to this value. Similarly, the cutoff Kmax=50 for thresh-
old networks was of no relevance. Compared to canalizing
networks, the K value shows correlations over longer time
intervals, and they spend more time above the horizontal
line. The canalizing networks appear to experience a “force”
which tends to decrease the K value, while the K value of the
threshold networks is less restricted. This may be due to the
fact that the addition of a link in a threshold network makes
the response of a node to its inputs only slightly more com-
plex, while it makes the response far more complex in a
canalizing network.

For threshold networks, there is a difference between the
two fitness criteria. For the “stay” criterion, the typical K
values appear to be larger, which means that the above-
mentioned “force” is weaker in this case.

The difference between version 1 �where the fitness is
lowered only by a small amount when the “stay” or the “re-
turn” criterion is not fulfilled� and version 2 �where the fit-
ness is set to zero in this case� has no meaning after 100%
fitness have been reached. Nevertheless, the K values appear
to be smaller for the first version. This may simply give an
impression of the variations between separate simulation
runs, or it may indicate an extremely long memory of certain
features of the initially evolved networks. Below, we will
present evidence for the second interpretation.

In Fig. 6, the lengths of the first attractors are plotted over
evolutionary time. In all cases the “stay” criterion produces
networks with larger attractors than the “return” criterion.
While for canalizing networks, this cannot be explained by
larger K values, this might well be the predominating cause
for threshold networks. The investigation below of the
mechanisms by which networks manage to satisfy the “stay”
criterion shows that these networks must contain feedback
loops, which can propagate a signal from the first node af-
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fected by the external input back to this node. This means
that the first attractor must be far from frozen. As shown in
�19� feedback structures lead to more complex dynamics
with longer attractors. Threshold networks seem to be able to
buffer an emerging feedback structure more efficiently than
canalizing networks.

In Fig. 7, the percentage of negative mutations among the
attempted mutations is plotted for every 100 accepted muta-
tions. Negative mutations are those that lower the fitness and
that are not accepted. The horizontal lines in Fig. 7 indicate
the average values. The percentage of negative mutations is
generally lower for the “return” criterion. In this case one
can see no significant difference between the two versions of
the criterion or between networks with different update rules.
Comparison with Fig. 5 shows a correlation between the
value of K and the percentage of negative mutations for the
“return” criterion but not for the “stay” criterion. This means
that for the “return” criterion networks with larger K �that are
therefore probably also more chaotic� are more sensitive to
mutations. Their mutational robustness is lower for larger K.
The loss of fitness can be attributed to attractors that are less
robust against perturbations. Such a correlation between ro-
bustness to noise and robustness to mutations was previously
found in evolutionary models of gene regulatory networks
�20–22�. A correlation between robustness to noise or tem-
perature and robustness to mutations can also be found in
micro-RNA �23�. For the “stay” criterion the percentage of
negative mutations fluctuates around an average value that is
indicated on the right hand side of the figure. The second
version of the criterion shows an increase in negative muta-
tions both for canalizing and for threshold networks. Thus
for networks evolved with the “stay” criterion the loss of
fitness—as it is equally probable for all values of K—must
be due to the incapability of the networks to stay at the
second attractor. But it is surprising that there are differences
between the first and the second version of the criterion,
since this difference does not matter once the maximum fit-
ness has been reached. The initial evolution seems to lead to
different regions in networks space depending on the version
of the “stay” criterion.

To assess the “phenotypic” similarity between two neigh-
boring networks on the plateau of 100% fitness we computed

the difference between the attractors of two subsequent net-
works of an adaptive walk for 100 steps. The difference be-
tween two attractors was measured by counting how many
nodes are frozen on one attractor and blinking on the other
attractor in each of the two networks, and how many of the
nodes that are equally frozen on both attractors have differ-
ent states. While a thorough quantitative evaluation extends
the limits of our study, we were able to see the following
trends: the similarity is larger for threshold than for canaliz-
ing networks and for networks evolved with the “stay” cri-
terion than for those evolved with the “return” criterion. For
threshold networks evolved with the “stay” criterion, for
growing connectivity a growing number of mutations is phe-
notypically neutral, with the second attractor changing more
slowly than the first one.

C. Properties of networks with maximum fitness

As we have seen in Sec. IV A, the “stay” criterion is
much more difficult to fulfill than the “return” criterion. In
Sec. IV B we have further seen that the “stay” property is
also easier to destroy.

For each of the eight studied cases �two update rules, two
fitness criteria, two ways of assigning the fitness�, we picked
the first network that had reached 100% fitness and eight
additional networks at time intervals of 100 000 mutations,
and we examined how exactly these networks fulfill the im-
posed tasks. The solutions found by the evolutionary process
differ obviously between the two selection criteria. However,
we found no obvious difference between the different ver-
sions of assigning the fitness. For canalizing and threshold
functions, the solutions are implemented in ways appropriate
to the update rules, but otherwise there are no qualitative
differences between the types of solutions found by the evo-
lutionary process for the two sets of update functions.

For the “stay” criterion, the signal from the external input
usually propagates only through one of the nodes connected
to this input, even when there are many such nodes. This is
because there has to exist a feedback through the network to
the nodes that directly react to the external input to keep
them from switching to their former behavior when the ex-
ternal input is switched back. The external input itself must
not canalize this node. In comparison, the “return” criterion
imposes far less constraints on the networks. The external
signal may propagate through more than one output of the
external node without detrimental effects, and the external
node may be canalizing or not for these nodes.

Switching between the two attractors generally happens
either through a cascade of switching events where frozen
nodes change their value, or by freezing blinking nodes or
unfreezing frozen nodes. Usually, just one of these possibili-
ties occurs in one network. The switching cascade happens
when both attractors are fixed points. Mixed forms, where
switching cascades of frozen nodes are combined with the
freezing or unfreezing of nodes, also exist but are frequent
only for threshold networks evolved with the “stay” crite-
rion. Rarely it also occurs that the same nodes are blinking
but in a different fashion.

In Fig. 8, the network parts relevant for the switching
between the attractors are plotted for canalizing networks
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FIG. 7. �Color online� Percentage of mutations that lower the
fitness as function of evolutionary time.
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evolved with the “stay” criterion. Nodes that are depicted as
circles blink on either one of the attractors or on both. Nodes
depicted as squares are frozen on both attractors. The first
example in Fig. 8 is the simplest. Here both attractors are
fixed points. When the external input is switched on, node 20
is switched off then node 32 is switched on, then node 4 is
switched on, and finally node 24 is switched off and cana-
lizes node 20 to the “off” value so that it does not switch
back when the external input is switched off again. �The
external input has a second output to the network that is not
relevant for the attractors.� The second example is also the
second most common in networks evolved with the “stay”
criterion. If not both attractors are fixed points, the first at-
tractor is usually much bigger than the second, which is a
fixed point or has sometimes the length 2. Thus, on the first
attractor there are blinking nodes that become frozen after
the external input has changed. In Fig. 8�b�, all nodes apart
from the external input are blinking on the first attractor. On
the second attractor all of them are frozen. Here, the external
signal propagates through two of the four possible links, and
both nodes have to be fixed to their frozen value by feedback
loops. The third example shows the rather uncommon case
where first the three frozen nodes 22, 36, and 19 are
switched, and then node 23 stops blinking, and with it also
the three other blinking nodes. These three very different
solutions of the “stay” criterion occurred during the same
adaptive walk and are therefore connected by neutral muta-
tions.

In Fig. 9, examples for the relevant parts of threshold
networks are plotted. Again nodes that are frozen on both
attractors are depicted as squares and blinking nodes as
circles. Arrows depict activating �+1� links and blunt-end
lines repressing links �−1�. In both examples, the blinking
nodes become frozen on the second attractor. Like in cana-
lizing networks one can see feedback loops that prevent the
network from going back to the first attractor. The most ob-
vious difference between canalizing and threshold networks
is that the relevant parts of threshold networks appear more
complex than the relevant parts of canalizing networks with
comparable attractor length. This happens because the con-
nectivity of these networks is much higher since the value of
the parameter � rises much slower with connectivity than for
canalizing networks. As the connectivity of threshold net-

works is higher than that of canalizing networks most of the
time, the number of outputs of the external input is higher in
these networks, but the signal propagates only through one
or two of them as in the canalizing counterparts. Also, the
probability of finding fixed point attractors in networks with
large K seems to be higher in threshold networks than in
canalizing networks.

V. CONCLUSIONS

In this paper we investigated the evolution of Boolean
networks with two different update schemes under selection
for two robust attractors, between which the networks switch
reversibly or irreversibly upon action of an external signal.
Evolution was simulated by means of an adaptive walk, a hill
climbing algorithm where a single network is mutated and
the mutation is accepted if it does not lower the fitness.

We found that canalizing and threshold Boolean networks
show similar behavior during evolution to maximal fitness
but differ at later times. Requiring that the networks stay at
the second attractor when the external input returns to its
former value turned out to be a much stricter criterion than
requiring that the networks return to the first attractor. More
mutations are needed to fulfill the first criterion, and maxi-
mum fitness is much easier destroyed, that is many more
mutations lead away from 100% fitness. It seems that creat-
ing and sustaining a feedback that prevents nodes from
switching to their former behavior is hard to achieve. In con-
trast, a network that is able to switch robustly between two
different attractors seems to be easy to implement. However,
networks always reached maximum fitness independently of
the selection criterion and were additionally able to evolve
further on huge plateaus of 100% fitness. On this plateau,
threshold networks evolve more often to connectivities in the
“chaotic” regime. The networks reached even higher connec-
tivities when evolved with the “stay” criterion than when
evolved with the “return” criterion. For networks with high
connectivity, many mutations are “phenotypically neutral,”
that is, the attractors do not change. When investigating in
more detail the evolved networks, we found that structurally
and dynamically very different network components are able
to fulfill the same task. We also found that networks with

(b)(a) (c)

FIG. 8. �Color online� Relevant parts of three canalizing net-
works �a, b, c� with 100% fitness evolved with the “stay” criterion.
Nodes that are depicted as circles blink at least on one of the at-
tractors. Nodes depicted as squares are frozen on both attractors.
Gray �red� nodes have the value 1, black nodes have the value 0.

(b)

(a)

FIG. 9. �Color online� Relevant parts of two threshold networks
�a, b� with 100% fitness evolved with the “stay” criterion. Arrows
�green� represent activating links, blunt-end lines �red� represent
repressing links. Squares depict frozen nodes and circles depict
nodes that blink on at least one of the attractors. Gray �red� nodes
have the value 1, black nodes have the value 0.
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shorter attractors are more robust against mutations, and that
the initial evolutionary phase may bring the networks into
different parts of network space, to which they remain con-
fined for very long times.

Although the toy networks employed in our simulations
are much simpler than real gene regulation networks, they
may teach some lessons that can be relevant for real evolu-
tionary processes:

First, selection is based on dynamical behavior, i.e., on the
“phenotype” of the networks, while mutations operate on the
network structure, i.e., the “genotype.” The fitness landscape
that is obtained in this way is very different from the rugged
landscapes with many isolated fitness peaks which are often
envisaged when modeling evolution by assigning a fitness
value directly to a genotype �24�. In the high-dimensional
genotype space given by network models, there are many
neutral directions and percolating clusters of high fitness.
This finding is in agreement with more general arguments
proposed by Gavrilets �25�. Inspired by the view that bio-
logical evolution does not take place on rugged fitness land-
scapes, he investigated “holey adaptive landscapes.” They
consist of nearly neutral networks of well-fit genotypes, with
all other genotypes being unviable. In �25�, he concluded
from some simple models for genotype to fitness mapping
that the existence of percolating nearly neutral networks ap-
pears to be a general property of fitness landscapes with a
large number of dimensions, as is the case for real genotype
space.

Second, if a task can be solved by evolution, it may well
be that it cannot only be solved in one way but in many
different ways. This behavior of our toy model is in agree-
ment with the phenomenon of convergent evolution �26� ob-
served for the adaptation to niches and the evolution of the
various sensory organs. In all these cases, the same challenge
was met independently several times by finding solutions

that agree in their general features, but that are very different
at the genetic level and in the phenotypic details.

Third, solutions of high fitness can be found without go-
ing through fitness valleys and without attempting to make
“hopeful monsters,” i.e., to perform many mutations at the
same time that carry the genotype to a distant point in the
fitness landscape. If this was not the case, the evolutionary
process would not have been possible. Neutral mutations are
an important means to navigate through genotype space and
to explore new possibilities. Studies of RNA secondary
structures show not only that there are many neutral paths
that percolate through the entire sequence space but also that
they are interwoven. In a small neighborhood of every ran-
dom sequence, one can find every statistically relevant sec-
ondary structure �27,28�. It was shown recently that biologi-
cal RNA structures have a large number of sequences that
fold into these relevant structures, much larger than for ran-
dom phenotypes �29�. Additionally, the authors of �30� were
able to design neutral paths for two very different ribozymes
that ended in structures that were only four �not neutral�
point mutations apart. That is, four point mutations were
enough for a change between one functionality and the other.
The ribozymes in between were able to catalyze both reac-
tions but with a lower activity. In �31� it was shown that
populations evolving on networks with more neutral neigh-
bors per node are more widely extended in genotype space
and can thus access a larger number of different phenotypes
by just one or two mutations.

To conclude, the fitness landscape derived from evolu-
tionary simulations based on network models appears to re-
flect many features of biological evolution. Exploring more
complex network models and more complex selection crite-
ria will be a next step at deepening our understanding of
biological evolution.
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